

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE		
QUALIFICATION CODE: 07BOSC	LEVEL: 7	
COURSE NAME: QUANTUM PHYSICS	COURSE CODE: QPH 702S	
SESSION: NOVEMBER 2019	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER		
EXAMINER(S)	Prof Dipti R. Sahu	
MODERATOR:	Dr Habatwa V. Mweene	

INSTRUCTIONS		
	1. Answer any five questions.	
	2. Write clearly and neatly.	
	3. Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Question 1 [20]

Consider a particle whose normalized wave function is

$$\psi(x) = 2\alpha \sqrt{\alpha} x e^{-\alpha x} \qquad x > 0$$

$$= 0 \qquad x < 0$$

- (a) For what value of x does $P(x) = /\Psi(x)/^2$ peak? (5)
- (b) Calculate $\langle x \rangle$ and $\langle x^2 \rangle$. (10)
- (c) What is the probability that the particle is found between x = 0 and $x = 1/\alpha$? (5)

Question 2 [20]

- 2.1 State, giving your reasons, which of the following functions would make satisfactory Wave functions for all values of the variable *x*:
 - (i) Ne^{ax^2}
 - (ii) Ne^{-ax^2}
 - (iii) $Ne^{-ax^2}/(3-x)$
 - (iv) Ne^{-ax}

where N and α are constants. (5)

(10)

2.2 In a region of space, a particle with mass m and with zero energy has a time independent

wave function

$$\psi(x) = Axe^{-x^2/L^2}$$

where A and L are constants. Determine the potential energy U(x) of the particle.

2.3 Write the expression $\langle \Psi/\Psi \rangle = 1$ as an explicit integral equation in three dimensions, assuming that $/\Psi \rangle$ represents a wave function $\Psi(r)$. Suppose you have $/\Psi \rangle = \sum_n Cn \mid n \rangle$ (where n in Cn as a subscript) where the $\{\mid n \rangle\}$ is a complete set of orthonormal states. What condition does the above equation impose on the C_n ? (5)

Question 3 [20]

3.1 Suppose that the operator corresponding to some observable is called Q. List two properties of this operator and/or of its eigenfunctions /n. The latter satisfy the equation $Q/n > = q_n/n$. Suppose further that the quantum-mechanical state of a system is given by

$$|\psi\rangle = \sum_{n} c_n |n\rangle$$

with several of the expansion coefficients being non-zero ($C_n \neq 0$). If you were to make a *single measurement* of the observable Q, what would you get as a result? (5)

3.2 The potential function for a problem is defined by:

$$V(x) = \begin{cases} 0; & -a < x < a \\ \infty; & |x| > a \end{cases}$$

- (a) Sketch the potential V(x)
- (b) Find the solutions of the time-independent Schroedinger equation in the different regions (5)
- (c) Interpret the results. (8)

Question 4 [20]

- 4.1 Find the probability that the electron in the ground-state of the H atom is less than a distance a from the nucleus. (5)
- Which pairs of operators commute in the set L^2 , L_x , L_y and L_z ? How is this related to which quantities can be simultaneously determined with arbitrary precision? (5)
- 4. 3 Evaluate the following commutators and state the consequences of the results. (i) $[x, p_x]$ (ii) $[y, p_z]$, where the symbols have their usual meanings. (10)

Question 5 [20]

- 5.1 Show explicitly that $S^2 = \hbar^2 s(s+1)$ (5)
- 5.2 Evaluate the matrix of L_x for l = 1. (5)
- Show that for $|s\rangle = \cos(\vartheta/2) / \uparrow > + \exp(i\varphi) \sin(\vartheta/2) / \downarrow >$, we obtain $|\sigma| = \sin\theta \cos\phi + \mathbf{j} \sin\theta \sin\phi + \mathbf{k} \cos\theta$ (10)

6.1 A particle moves in the 1-dimensional potential $V(x) = \infty$, |x| > a, $V(x) = V_0 \cos(\pi x/2a)$, (10) $|x| \le a$, Calculate the ground-state energy to first order in perturbation theory. The unperturbed system energy and wave function is given by

$$E^{(n)} = \frac{\pi^2 \hbar^2 n^2}{8ma^2}, \quad u^{(n)} = \frac{1}{\sqrt{a}} \left\{ \begin{array}{c} \cos \\ \sin \end{array} \right\} \frac{n\pi x}{2a}; \quad n \left\{ \begin{array}{c} \text{odd} \\ \text{even} \end{array} \right\}$$

6.2 Consider a charged particle in the 1D harmonic oscillator potential. Suppose the particle is placed in a weak, uniform electric field. Treat the electric field as a small perturbation and obtain the first order corrections to the harmonic oscillator energy eigenvalues. (10)

Useful Standard Integrals

$$\int_{0}^{\infty} x^{n} e^{-x} dx = n!$$

$$\int_{-\infty}^{\infty} e^{-y^{2}} dy = \sqrt{\pi}$$

$$\int_{-\infty}^{\infty} y^{n} e^{-y^{2}} dy = \frac{\sqrt{\pi}}{n}; \quad n \quad \text{even } \int_{-\infty}^{\infty} e^{-\alpha y^{2}} e^{-\beta y} dy = \left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} e^{\frac{\beta^{2}}{4\alpha}}$$

$$0; \quad n \text{ odd}$$